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sequence creates 321123 out of (22)3. It is to be noted 
that a scheme similar to ours has been put forward by 
Mardix, Kalman & Steinberger (1969) to explain the 
growth of ZnS polytypes. However, their work relates 
to transformation of polytypes in the same crystal and 
not to the growth of different polytypes. Also, their 
scheme always envisages stacking faults at equal inter- 
vals and up to a certain step the layers slip in a clock- 
wise direction and for the rest of the steps in an anti- 
clockwise direction, and this sequence of slip repeats 
periodically. The present scheme assumes only peri- 
odic stacking faults; the faults may not be at equal 
intervals as for example in the case of 32H. More- 
over, the slip of layers is always alternately in clock- 
wise and anticlockwise directions. Such a scheme of 
layer transposition is possible only when suitable 
partial dislocations, which nucleate stacking faults, 
sweep the basal plane; the sweeping occurs in the se- 
quence after certain regular period in the parent struc- 
ture. In order to find out whether chains of basal 
stacking faults occur in cadmium iodide crystals, we 
tried to observe the crystals directly in the electron 
microscope. Since cadmium iodide crystals are ex- 
tremely susceptible to electron beam damage, it is not 
usually possible to observe the dislocation pattern in 
these crystals. However, by improving the thermal 
contact of the crystal with the specimen grid and em- 
ploying full excitation of condenser lenses, we were able 
to observe the dislocation patterns in nearly 60% of 
the crystals. It is, however, not always possible to 
study completely each individual crystal. We found 
that dissociation of basal dislocations producing two- 

fold, threefold and fourfold ribbons usually took place 
in all the crystals observed. Fig. 5 represents a typical 
example of twofold, threefold and fourfold partial 
ribbons. Thus it seems reasonable to believe that se- 
quences of partial ribbons producing stacking faults 
occur in the cadmium iodide crystals and a regular 
sequence of stacking faults creating a polytype can 
easily occur. This lends support to the scheme of the 
growth of the polytypes that we have presented. Fin- 
ally the determination of probable structure of a 
polytype based on calculation of theoretical stacking 
fault energy seems to be a new approach which needs 
to be explored further. Also the minimum stacking 
fault energy criterion lends credence to the above ex- 
planation of growth of polytypes in terms of creation 
and ordering of stacking faults. 
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Calculation of the Intensity of Secondary Scattering of X-rays by Non-crystalline Materials 
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Equations that require numerical integration over only one variable were derived for calculating the 
intensity of secondary scattering of X-rays for non-crystalline samples of finite thickness. Both the 
reflection and transmission geometry cases were considered. Tables are given that allow the intensity 
ratio of secondary to primary scattering to be determined without making lengthy calculations. Modi- 
fication of the normalization procedure when secondary scattering is important is discussed. 

Introduction 

In studies of high molecular weight, petroleum- 
related, non-crystalline organic solids it was necessary 

* Presently serving in the U. S. Air Force; former Bureau 
of Mines Student Trainee and graduate student in physics at 
the University of Chicago, 

to correct for secondary scattering. Warren & Mozzi's 
(1966) method of calculating secondary intensity for 
reflection geometry using samples of effective infinite 
thickness could not be used, because it was desired to 
use thin samples to avoid certain smearing corrections 
(Bragg & Packer, 1963; Keating & Warren, 1952) in 
the high angle scattering region. It also was desired to 
make secondary scattering corrections for trans- 
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mission data in angular ranges for which the small- 
angle approximations do not apply. Thus the method 
of Chonacky & Beeman (1968, 1969) that applies only 
in the small-angle scattering region could not be used. 

Thus equations were derived that allow calculation 
of secondary intensity in the reflection case for samples 
of any thickness and that allow calculation of secondary 
intensity in the transmission case for high- as well as low- 
scattering angles. It was desired to obtain working 
equations in a form convenient for evaluation using 
a computer. 

Little more than starting and final equations can be 
given, because the derivations are extremely long. 
Those needing more details concerning the derivations 
should contact the authors. 

Symbols used in different sections should not be 
exchanged unless they are listed in the nomenclature 
section or it is otherwise indicated that they can be 
exchanged. 

General theory 

Smearing corrections will be neglected here, but they 
will be considered in the Appendix concerning nor- 
malization. 

The general equation for primary scattering, either 
coherent or incoherent, can be expressed as 

Ion I Jxaexexp(-/alo-/a'{20}l)dVa2. (1) Ixv= R2- v12 
The subscript x is replaced by i for incoherent scat- 
tering. For coherent scattering the subscript x is 
replaced by e and the exponential argument reduces 
to -/aL~. 

The differential electron cross sections include the 
polarization correction and, in the case of incoherent 
scattering, the recoil correction. 

Because electron cross sections are nearly the same 
for coherent and incoherent scattering, they can be 
assumed to be the same for calculating the intensity of 
secondary scattering. Also incoherent frequency shifts 
can be approximated so that the absorption term 
exp (--fiLE) can be used. Using these simplifications, 
the intensity for secondary scattering is 

I2= --R~- Ivl lv2 72 I°n2 1 aCE J{201} J{202} 

x exp (-/aLE)dVadV2. (2) 

The differential electron cross section for secondary 
scattering can be obtained for nearly any case of 
interest using the matrix methods of McMaster (1961) 
and appropriate simplifications. The J terms in 
equation (2) are 

J{2Oj} =Je{2Oj}+ (_v'2_~_) 3ji{2Oj } . (3) 

The term V'2oj is the incoherent frequency resulting from 
scattering at the point j through a scattering angle of 

20j. Usually the frequency ratio term in equation (3) 
can be completely neglected for secondary scattering. 
It was used as given because of the manner in which 
the authors store incoherent intensity data for com- 
puter use. 

The results for both the transmission and reflection 
geometry cases will be presented in the form of the Q 
function that is related to the ratio of secondary to 
primary intensity by 

12 _ (~.z~)2Q (4) 
i l -  J{ZO}~.Aj/aj{m} " 

Transmission geometry theory 

The geometry considered is that of a slab of sample 
having faces normal to the incident X-ray beam. The 
six position variables of equation (2) were transformed 
to a set of three cartesian coordinates and to a set of 
three spherical coordinates in terms of the vector r. 
After introduction of boundary conditions for the 
sample shape and explicit expression of the terms in 
equation (2), it was possible to integrate analytically 
over five of the six position variables. It is assumed 
that the detector views a portion of the sample larger 
than V1. 

The Q function and terms that are contained in it 
are given in the equations that follow. These are the 
final working equations. 

Q{b,q,20,/at}=G [l ° 
~,= --n/2 

in/2 W-M d),+ W+ M d,] 
,/7=0 

(5) 

[ cosy ] [ 1 - e x p  (-/at{1 - sec 20}) 
W+= 1 - s i n , s e c 2 0  x 1 - s e c 2 0  

_ exp(-/at{ 1-sec  20})-exp(-/at{csc,-sec 20}) ] 

W_= 

csc y -  1 

[ c o s ,  ] [ 1 - e x p ( - / a t { 1 - s e c 2 0 } )  
1 - s in ,  sec 20 . . . . .  1 - sec 20 

_ exp (-/at{1-csc_ ?,})-!_ ] 
csc , -  1 

[re+c4] 
x (1 +cos 2 20) ( 1 - e x p  {- /a t  [1 - sec  20]})- 

[ 2 ( l - q )  ] 
M = E n  q+ 2 + b ( 1 - s i n , )  

E (A + BF+ CF E) - ECF ] x [ q A + q ~ - E B + ~  
_1 

A = [sin 2 , + cos 2 20 (1 - sin 2 , + sin 4 ,)]/2 

B= sin 20 cos 20 sin 3 , c o s ,  

C=  [sin E 20 cos E 7 (1 + sin E 7)]/2 
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E= 

F= 

2 ( l - q )  
b sin 20 cos y 

2 + b(1 - cos 20 sin 7) 
b sin 20 cos 7 

Care must be taken to consider indeterminate forms 
in calculating the Q function. Indeterminate forms can 
be avoided by careful selection of the increments in 
y for the numerical integration, or l'Hospital's law can 
be used. 

Reflection geometry theory 

The paper of Warren & Mozzi (1966) should be con- 
sulted for the derivation of equations for a sample of 
infinite thickness. Conversion of equation (2) to the 
coordinate system used by Warren & Mozzi results in 
their expression for the differential of secondary intensity 
except for the absorption term that must be modified for 
a sample of finite thickness. It was possible to ana- 
lytically integrate over five of the six position variables. 

The Q function and terms in it are given in equations 
that follow. These are the final working equations. 

GI rcl2 
WM de Q{b,q,O,/ut}= o.=o 

( e4 ) ( 8Ns in0  ) 
G= m--5~-c4 . [ l + c o s  z 20][1-exp (-2/zt  csc 0] 

(6) 

Care must be taken to consider indeterminate forms 
in calculating the Q function. 

Results 

Values of the Q function for the reflection geometry 
case are given in Table 1, and values for the trans- 
mission geometry case are given in Table 2. The param- 
eters b and q that are necessary to determine Q are 
defined in the Nomenclature section by an equation 
relating them to the total atomic intensity J for the 
selected structural unit. Values of b and q are selected 
that give the best fit between the equation and J 
values calculated from the squares of structure factors 
and, when incoherent radiation is detected, incoherent 
intensities. A trial-and-error method can be used. If 
a computer is available, it often is faster to solve for 
b and q using either a successive-approximations or 
a least-squares method. Using b, q, and pt, interpola- 
tion between values given in the tables should give 
values of Q that are sufficiently accurate for most 
purposes. When Q is obtained, the intensity ratio of 
secondary to primary intensity can be determined 
using equation (4). 

Double precision source programs for calculating 
Q that are written in 360 Fortran IV (H level) are 
available from the authors. Only 81 seconds of com- 
puting time were required to compile the source pro- 
gram and calculate 576 values of Q in the reflection 
geometry case, and only 85 seconds were required in 

X =  [exp (-lEt csc 0)][2lsin el exp ( - p t  lcsc el)-(s in 0+ Isin el) exp ( - p t  csc 0)] 
sin E O-s in  2 e 

W=X+X'  

X'= 1/(sin 0+  lsin el) 

M= [qZ(A Y~ + B YE + C Y3) + qE(A Y4 + B Ys + C Y6) 

+ EE(AYT+BYs+CYg)]COSe 

A = sin 2 0 sin E e + (sin z 0 sin 2 e + cos 20)2/2 

B= cos 2 0 cos 2 e(1 - s i n  2 0 sin E e - c o s  20) 

C =  cos 4 0 cos 4 e/2 

E=2(1 -q)/(b cos 0 cos e) 

rl=~; Y2=~/2; r3= 3g/8; r 4 = z  1-[-z 2 
r5 = Ff r~ + F~ r 2 -  ~(F, + F9 
gt= f41Tx + f42Tz- rC(F1 + f z)/2- g(f~ + F32) 
Y7=(T~-  T~)/(FI- &) 
r~ = ~ + (F~ T~ - F~ TO/( F~ - &)  

Y9 = ~/2 +(F*zTz-F~TO/(F1-F2)+ ~z[(F1 + FE)E-F1Fz] 

F1 = [2 + b(1 + sin 0 sin e)]/b cos 0 cos e 
Fz=[2+b(1 - s i n  0 sin e)]/b cos 0 cos e 
T~=~/(F~- 1)'/2; Tz=~/(F~- 1 ) ' 1  z , 

the transmission geometry case. However it also was 
possible to calculate Q values on a drum memory com- 
puter having a memory of only 2000 words. 

If the intensity ratio Ia/I1 is calculated for infinite 
thickness in the reflection case using the Qo~ values of 
Warren & Mozzi (1966), then the percentage error 
in Ia/I~ on assuming that a sample of finite thickness is 
of infinite thickness is IO0(Qoo-Q)/Q. As typical 
examples, for b=20,  q=0,  and 20= 120 °, the error is 
22 per cent for /zt= 1 and 70 percent for/zt=0.5.  

Typical values of Ia/Ix in both the transmission and 
reflection cases have ranged from 1 to 10 percent in 
the authors' work with materials containing mainly 
hydrocarbons for/ t t  values of 0.3 to 3 in the reflection 
case and for/zt values of 0.3 to 1 in the transmission 
case. A calculation of 12/11 for vitreous silica agreed 
with that of Warren & Mozzi (1966) for the reflection 
geometry case in the limit of infinite thickness. Using 
the scattering coefficient for water given by Chonacky 
& Beeman (1969), Ia/Ix was about 0.095 f o r / a =  1 in the 
transmission case at zero scattering angle. This is in 
reasonably good agreement with the value of 0.08 given 
by Chonacky & Beeman (1969) who determined IE/I~ 
using experimental coherent intensities rather than an 
approximation based on atomic coherent intensities, 
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Table 1. Values of Q{b,q,20,#t} x 104 for reflection geometry 

# t = 0 . 1 0  
20 b =  10 b = 2 0  b = 4 0  b = 6 0  b = 8 0  b =  100 

(q=O) 
30 87.38 49.44 24.74 15.43 10.71 7.93 
60 64.42 28.87 11-05 5.91 3.71 2.56 
90 41.30 15.73 5.26 2.65 1.61 1.08 

120 25.27 8.74 2.75 1.35 0.81 0.54 
150 19.31 6.40 1.96 0.96 0.57 0.38 
179 17.95 5.87 1.78 0.87 0.52 0.35 

(q=0.05)  
30 97.98 58.30 31.88 21.62 16.26 13-02 
60 76.54 38.64 18.36 11"96 8.97 7.28 
90 53.53 24.96 11.80 7.94 6.17 5-17 

120 36.13 16.57 8.15 5.71 4.57 3.92 
150 29.32 13.47 6.79 4.86 3.95 3.42 
179 27.74 12.75 6.48 4-66 3.80 3.30 

(q=O.lO) 
30 110.34 69.30 41.47 30.41 24.51 20.86 
60 90.48 50.67 28.29 20.77 17.09 14-93 
90 67.57 36.47 20.94 15.98 13.57 12-14 

120 48.70 26.51 15.95 12.58 10-92 9.92 
150 40.98 22.56 13.92 11.14 9.77 8.94 
179 39.16 21.63 13.43 10.80 9.49 8.70 

(q=0.20)  
30 140.33 97.73 68.01 55.80 49.08 44-83 
60 123.81 81.47 55.95 46.69 41.91 38.98 
90 101.12 66.27 47.04 40.31 36.86 34.74 

120 78.96 52.74 38.76 33.88 31.36 29.80 
150 69.24 46.82 35.01 30-88 28-74 27.42 
179 66.92 45.41 34.11 30.16 28.11 26.84 

# t=0 -20  
20 b = l O  b = 2 0  b = 4 0  b = 6 0  b = 8 0  b = l O 0  

(q=O) 
30 128.78 71.92 35.66 22.20 15"40 11-41 
60 99.17 44.42 17.09 9.20 5.80 4.01 
90 66.05 25.31 8.55 4.34 2.64 1.79 

120 41.67 14.58 4.64 2.30 1.39 0.93 
150 32.16 10.79 3.35 1.65 0.99 0.66 
179 29.92 9.93 3.06 1.50 0.90 0.60 

(q=0.05)  
30 145.19 85.54 46"57 31.63 23.86 19.16 
60 118.49 59.98 28.76 18.86 14.22 11.58 
90 86.06 40.49 19.34 13.09 10.20 8.56 

120 59.70 27.67 13.72 9.63 7.72 6.62 
150 48.79 22.64 11.50 8.22 6.68 5.78 
179 46.17 21.45 10.97 7.88 6.42 5"57 

(q=0.10)  
30 164.32 102.48 61.27 45.08 36.46 31.15 
60 140.69 79.10 44.55 32.90 27.16 23.77 
90 108.97 59.29 34.31 26.25 22.30 19.96 

120 80.46 44.15 26.67 21.02 18-22 16.54 
150 68.02 37.71 23.30 18.63 16.29 14.88 
179 65.00 36.15 22.48 18.03 15.81 14.46 

(q=0.20)  
30 210.74 146.29 102.03 84.01 74.14 67.89 
60 193.70 128.02 88.46 74.05 66-57 61.98 
90 163.50 107.77 76"77 65.82 60.15 56"67 

120 130.14 87.27 64.14 55.97 51.72 49.09 
150 114.32 77.53 57.87 50.92 47.29 45.04 
179 !!0"40 75"1! 56"30 49"65 46"17 44"02 
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T a b l e  1 (cont.) 
~t=0 .50  

20 b = l O  b = 2 0  b = 4 0  b = 6 0  b = 8 0  b = l O 0  
(q=0)  

30 178"45 97"86 47"90 29"69 20"58 15"24 
60 155-09 69'29 26"82 14"53 9-21 6"40 
90 111"51 43"11 14"76 7"56 4"64 3"16 

120 74"33 26"43 8"56 4"29 2"61 1"76 
150 58"40 20"01 6"33 3"15 1"90 1"28 
179 54"48 18"47 5"80 2"88 1"74 1"17 

(q=O.05) 
30 202.72 117.82 63.72 43.32 32.77 26.41 
60 187.01 94.92 46.07 30.51 23.17 18.97 
90 146.50 69.80 33.88 23.11 18.09 15.21 

120 106.81 50.30 25.26 17.80 14.28 12.23 
150 88-49 41.75 21.42 15.35 12.45 10.76 
179 83.87 39.61 20.45 14.72 11.98 10.37 

(q=0.10)  
30 231.02 142.68 85.15 62.87 51-08 43-83 
60 223.62 126.35 72.03 53.61 44.48 39.06 
90 186-40 102-62 60-07 46.16 39.27 35.15 

120 143.89 79.93 48.58 38.28 33.13 30.00 
150 122.93 68.93 42.74 34.09 29.72 27-06 
179 117.56 66-11 41-21 32.98 28.81 26.27 

(q = 0.20) 
30 299-69 207.12 144.80 119.76 106.11 97.48 
60 310.95 206.67 144-08 121.16 109.18 101.78 
90 280.88 186.67 133.70 114.72 104.82 98.67 

120 231-87 156.48 115.04 100.16 92.33 87-46 
150 204.92 139.64 104.01 91.18 84.41 80.18 
179 197.84 135.19 101-05 88.75 82.26 78-20 

~ t =  1-00 
20 b = 1 0  b = 2 0  b = 4 0  b = 6 0  b = 8 0  b = 1 0 0  

(q=0)  
30 190.62 103.86 50.58 31.30 21.67 16.05 
60 186.42 83.03 32.19 17.50 11.12 7-75 
90 145.57 56.55 19.53 10.07 6.21 4.23 

120 102.57 36.91 12.11 6.12 3.73 2.53 
150 82.29 28.63 9.19 4.61 2.80 1.90 
179 77.10 26.57 8.48 4.24 2.57 1.74 

(q=O.05) 
30 217.17 125.60 67.76 46.06 34.86 28.12 
60 226.15 114.83 56.08 37.34 28.47 23.38 
90 192.44 92.42 45.33 31-10 24.41 20.56 

120 147.72 70.38 35.68 25-22 20.24 17.33 
150 124.56 59-53 30.81 22.11 17.93 15.47 
179 118.48 56.70 29.52 21.27 17.30 14.95 

(q=O.lO) 
30 248.13 152.72 91.06 67.30 54.76 47.05 
60 271-71 153.84 88.27 65.99 54.92 48.31 
90 245.72 136.32 80.41 61.96 52.77 47.24 

120 198.97 111.52 68.10 53.68 46.39 41.96 
150 172.60 97.66 60.74 48.38 42.09 38.24 
179 165.52 93.94 58.72 46.91 40.88 37.19 

(q=0-20) 
30 323.27 223.05 156.06 129-25 114.66 105.45 
60 380.32 253.49 177.59 149.73 135.14 126.09 
90 371.49 248-22 178.44 153.22 139.97 131.72 

120 319.78 216.83 159.49 138.64 127.60 120-67 
150 285.93 195.65 145-56 127.26 117.52 111.40 
179 276"58 189"74 14!"6! 124"00 114"62 108"72 
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T a b l e  2. Values of Q{b, q, 20,1tt } × 104 for transmission geometry 

p t=0-20  
20 b = l O  b = 2 0  b = 4 0  b = 6 0  b = 8 0  b = l O 0  

(q=O) 
0.20 59.64 29.44 14.61 9.74 7.31 5.86 

15 60.12 29-13 13.82 8.80 6.32 4.86 
30 59.53 27.12 11.56 6.77 4.55 3.31 
45 60.46 25.97 10.12 5.59 3.60 2-54 
60 62.89 25.97 9.59 5.13 3.24 2.25 
75 66.20 27.03 9.88 5-27 3.32 2-30 

(q=O.05) 
0.20 73.50 39.42 21.64 15.51 12.37 10.45 

15 74.23 39.36 21.08 14.79 11.59 9.65 
30 74-37 38.03 19.35 13.19 10.18 8.41 
45 76.58 38.01 18.76 12.67 9.78 8-12 
60 80.87 39.67 19.48 13.22 10.26 8.56 
75 86.43 42.82 21.50 14.83 11.64 9.78 

(q=0.10)  
0.20 90.06 52.67 32.33 25.09 21.33 19.00 

15 91.05 52.87 32.01 24.60 20.76 18.40 
30 91.91 52.22 30.84 23.48 19.77 17.54 
45 95.40 53.35 31.13 23.69 20.00 17.80 
60 101.52 56.68 33-16 25.32 21.43 19.09 
75 109.27 61.91 36.93 28.46 24.17 21.56 

(q = 0.20) 
0.20 131-28 88-97 64-67 55-71 50-96 47-99 

15 132.78 89.71 64.87 55"71 50.86 47.84 
30 135.09 90.44 64.89 55-63 50.81 47.84 
45 141-09 93.93 67.12 57.51 52.54 49.48 
60 150.83 100.64 71.94 61.57 56.16 52.81 
75 162.82 109.96 79.28 67.91 61.84 58.01 

p t = 0 . 5 0  
20 b =  10 b = 2 0  b = 4 0  b = 6 0  b = 8 0  b =  100 

(q=O) 
0.20 130.39 67.73 34.82 23.54 17.80 14.33 

15 129-83 65-79 32-15 20.71 14-97 11-55 
30 128.60 61.39 27.05 16.06 10.87 7.94 
45 128.70 57.62 23.16 12.95 8-41 5"96 
60 131.41 56-01 21.21 11.47 7.29 5.09 
75 137.60 56.94 20.98 11.21 7-07 4.91 

(q=O.05) 
0.20 155.38 86.24 48.12 34.52 27.45 23.09 

15 155.34 84-82 45.94 32.15 25.04 20.71 
30 155-67 81.91 42.06 28.52 21.82 17.88 
45 158.43 80.49 39.93 26.81 20.53 16.90 
60 164.95 82.17 40.43 27.30 21.07 17.48 
75 176.07 87.37 43.50 29.78 23.24 19.44 

(q=0.10)  
0.20 184.94 110.32 67.72 52.11 43.87 38.74 

15 185.43 109.45 66.05 50.22 41.92 36.79 
30 187.34 108.05 63-45 47.69 39.67 34.83 
45 192.76 109.05 63.22 47.56 39.73 35.06 
60 203.12 114.13 66.37 50.26 42.21 37-39 
75 219.17 123.70 72.95 55.75 47.07 41.81 

(q=0.20)  
0.20 257.79 175.26 125.85 107.13 97.07 90.72 

15 259.33 175.49 125.24 106.26 96.10 89.72 
30 264.40 177.22 125-40 106.18 96.07 89.81 
45 275.22 183.26 129.35 109.68 99.40 93.06 
60 293.33 195.44 138.37 117.52 106-57 99.77 
75 319.28 214.08 152.62 129.87 117.75 110.12 
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Table 2 (cont.) 
p t =  1.00 

20 b =  10 b = 2 0  b = 4 0  b = 6 0  b = 8 0  b = 1 0 0  
(q=0)  

0.20 232.89 126.24 66.82 45.69 34.78 28.10 
15 231.52 122.33 61.52 40.08 29.16 22.57 
30 227.94 113.17 51.23 30.75 20.94 15.36 
45 226.35 104.91 43.22 24.43 15.96 11.34 
60 229.82 100.56 38.81 21.16 13.51 9.45 
75 241.94 101.35 37.52 20.05 12.65 8.78 

(q=0.05)  
0.20 269.94 154.51 87.58 62.96 49.98 41.91 

15 269.50 151.58 83.21 58.22 45.18 37.17 
30 268.69 145.08 75.15 50.77 38-59 31-37 
45 271.76 140.96 70.26 46.94 35.68 29.15 
60 282.10 142.40 70.08 47.06 36-09 29.76 
75 303.75 151.02 74.52 50.58 39.18 32.58 

(q=0.10)  
0.20 313.24 190.54 117.20 89.56 74.79 65.51 

15 313.75 188.59 113.78 85.74 70.85 61.59 
30 315.73 184.81 108.07 80.32 66.06 57.41 
45 323.55 185.00 106.56 79.29 65.58 57.36 
60 340.89 192.53 111.08 83-34 69.44 61.10 
75 372.23 209.38 121.89 92.25 77-32 68.28 

(q=0.20)  
0.20 418.64 285.83 202.98 170.76 153.21 142.06 

15 421.05 285.89 201.56 168.85 151.13 139.92 
30 428.69 287.77 200.89 167.95 150.44 139.53 
45 446.24 297.08 206.98 173.54 155.94 145.02 
60 478.01 317.65 222.27 187.06 168.48 156.88 
75 529.25 352.21 247.75 209.01 188.39 175.43 

pt=2"O0 
20 b = 1 0  b = 2 0  b = 4 0  b = 6 0  b = 8 0  b = 1 0 0  

(q=O) 
0.20 410.23 232.67 127.12 88.05 67.52 54-82 

15 407.09 224.74 116.51 76.85 56.30 43.78 
30 400.42 207-12 96"47 58.58 40.16 29"58 
45 397.46 190.83 80.57 46.00 30-22 21.57 
60 404.67 181.68 71.31 39.15 25.08 17.59 
75 413.96 175.52 65.29 34.90 22.00 15-26 

(q=0.05)  
0.20 462.75 274.40 158.67 114.57 90.95 76.12 

15 461.30 268.25 149.80 105.02 81.29 66.58 
30 459.66 255.52 133.93 90.29 68.23 55.08 
45 465.29 246.85 123.76 82.28 62.10 50.36 
60 485.48 248.42 122.19 81.50 62.06 50.82 
75 510.88 254.90 124.90 84.08 64.69 53.46 

(q=O-lO) 

0.20 523.20 326.13 201.85 153.44 127.16 110.50 
15 523.45 321.78 194.76 145.61 119-15 102.53 
30 526.91 314.11 183.30 134.73 109.49 94.11 
45 541-35 313.43 179.44 131.97 107.93 93.47 
60 574.94 326.47 186.62 138.47 114.29 99-74 
75 616.90 346.47 199.37 149.39 124.24 109.04 

(q=0.20)  
0.20 667.88 459.57 323.07 268.27 237.96 218"50 

15 671"58 458"94 319"71 264"05 233.45 213.92 
30 685.49 461"82 317"78 261-75 231.63 212"74 
45 718"19 478"29 328"30 271"56 241"44 222.66 
60 779"80 516"46 356-13 296-28 264-52 244.66 
75 856"23 566"22 392"89 328"35 293"96 272.33 
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Discussion 

The derivations in this paper and in the references 
cited do not consider use of a monochromator crystal. 
The equations for primary and secondary intensity 
both must be modified when a crystal is used, and 
much more complicated polarization factors result. A 
preliminary consideration of this problem indicates 
that it can be solved and that the intensity of secondary 
scattering obtained when a crystal is used is not 
directly proportional to the intensity obtained when a 
crystal is not used. However such a solution would 
result in extremely complex equations. Because the 
primary and secondary intensities are changed in the 
same direction when a crystal is used, it usually 
should be sufficient to use Q values given if the in- 
tensity of secondary scattering is kept small. Crystals 
now need not be used for much X-ray scattering 
work. Improved pulse height analyzers used with the 
newer solid state detectors often give resolution as 
good as that produced by a crystal for energies of 
about 20 keV and greater (Campbell, 1970). Since 
radiation of about 20 keV or slightly less is needed to 
obtain high resolution radial distribution functions, 
the new detectors should serve as well as crystals in 
many cases. 

The approximation for primary scattering based on 
atomic coherent intensity that is used to calculate 
secondary scattering intensities is most likely to give 
trouble for small angle data in the transmission case 
when/zt is large. This is because the integration over 
the primary scattering curve, obtained using the ap- 
proximation, is weighted heavily at fairly small 
scattering angles where the deviations of atomic 
coherent intensity from the true coherent intensity 
are the greatest. Thus, when collecting small angle 
transmission data, the value of/zt should be made as 
small as possible. The value of/zt usually should not 
exceed 1 because primary intensity decreases and the 
ratio of secondary to primary intensity increases for 
values greater than 1. 

A1 
b, q 

C 
e 
Io 
I1 
I2 
k~ 

J~ 

A 

Nomenclature 

Atomic weight of element j. 
Parameters used to approximate scattering 

(Warren & Mozzi, 1966) in J=['~Z~][q+ 
(1 - q)/(1 +b sin 2 0)]. 

Velocity of light. 
Electronic charge. 
Intensity of X-ray beam incident to the sample. 
Total intensity of primary scattering. 
Total intensity of secondary scattering. 
Intensity of primary coherent scattering. 
Intensity of primary incoherent scattering. 
Coherent intensity per structural unit in electron 

units. 
Incoherent intensity per structural unit in elec- 

tron units (without recoil correction). 

10, l Distance traveled by X-ray beam in sample 
before and after scattering, respectively, for 
primary scattering. 

L1 Total distance traveled by X-ray beam in 
sample for primary scattering --10+ l. 

L2 Total distance traveled by X-ray beam in 
sample in the case of secondary scattering 
= s + r + s l .  

m Rest mass of electron. 
N Avogadro's number. 
n Number of structural units per unit volume. 
R Distance from sample to detector face. 
r Vector from first to second scattering point in 

the case of secondary scattering. 
r Distance between first and second scattering 

points in the case of secondary scattering. 
s Distance traveled by X-ray beam in sample 

before scattering at first scattering point in 
the case of secondary scattering. 

sl Distance traveled by X-ray beam in sample 
after scattering at second scattering point in 
the case of secondary scattering. 

t Sample thickness. 
V1 Volume of sample illuminated by incident X-ray 

beam. 
/I2 Volume of sample viewed by detector. 
V12 Volume of sample contained in both//'1 and V2. 
Z~ Atomic number of element j. 
20 Total scattering angle for primary scattering. 
201 Total scattering angle at first scattering point in 

the case of secondary scattering. 
202 Total scattering angle at the second scattering 

point in the case of secondary scattering. 
/~ Linear absorption coefficient at the wavelength 

of incident radiation. 
/z'{20} Linear absorption coefficient at the wavelength 

of incoherent radiation as a function of 
scattering angle. 

/q{m} Mass absorption coefficient of element j. 
v, v' Frequency of coherent and incoherent radiation, 

respectively. 
aec Differential cross section for coherent primary 

scattering by an electron. 
aa  Differential cross section for incoherent primary 

scattering by an electron. 
6e2 Coherent electron cross section for double 

scattering. 

APPENDIX 

It is desired to obtain the intensity of primary scattering 
normalized to electron units. It will not be possible to 
give detailed derivations here, but working equations 
will be given. 

The experimental counting rate Rex can be expressed 
a s  

RexOC [Ic~+ I,~ ( V~ ) +12] . (7) 
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The experimental counting rate measured using a 
radiation counter is proportional to the total number 
of photons detected per unit time and is not propor- 
tional to intensity when more than one frequency of 
radiation is present. Thus a frequency ratio must 
appear in equation (7) to obtain counting rate from 
intensity, because the derivations are based on in- 
tensity in units of erg.cm -2 per unit time. Uncorrected 
incoherent intensities J~ must be multiplied by a 
frequency ratio taken to the third power to make the 
recoil correction if intensity is desired. If a quantity 
proportional to the probability of scattering or detec- 
tion of a photon is desired, the recoil correction is a 
frequency ratio taken to the second power. 

Upon integration of equation (1) for both the co- 
herent and incoherent cases and by slight manip- 
ulation of the equations for secondary scattering, 
an equation for a normalization constant K can be 
obtained. 

K =  Rex/([o,~ 2Jc + o~'3J, 

+o~zQ{~Z~}Z/~A, lu j{m}lo~, )  (8) 

o~x = 1 + cos 2 20 

o~2= [exp ( - p t  sec 2 0 ) -  exp ( -p t ) ] / [ ( l  - s e c  0) 
x ~Ajpj{m}] (transmission) 

o~2 = [ 1 - exp ( -  2pt csc 0)]/2 ~A~luj{m} (reflection) 

exp ( - f i t  sec 2 0 ) -  exp ( - /x t )  ( ~ ) 2  
o~3= 

~,Ad~j{m}-'~Aitu}{m} see 20 v 
(transmission) 

1 - e x p  [ - ( / ~ + / f ) t  csc 0] (_~)2 
' ~ 3 =  ~Aj./zj{m} + ~Ajp~{m} " 

(reflection) 
It should be noted that the denominator in the ex- 
pression for o~3 simplifies if it is assumed that the 
incoherent wavelength shift can be neglected in mak- 

ing the absorption correction. However, such an 
assumption can result in at least three per cent error 
for radiation of short wavelength at high scattering 
angles, so it may not be justified for all experiments. 

Normalization is done in the usual manner using 
high-angle data except equation (8) is used to deter- 
mine the normalization constant. Once the norma- 
lization constant is obtained, equation (8) can be 
solved for the intensity of primary coherent scattering 
at all scattering angles. 

If both high and small-angle scattering data are 
collected using different equipment, the normalization 
procedure must be modified somewhat. The experi- 
mental intensity data for both experiments are over- 
lapped in a region where intensities are changing only 
slowly with scattering angle so that any smearing 
corrections will be small. The high-angle scattering 
data, collected under conditions for which smearing 
is not important, is then normalized as described. The 
small-angle data then are multiplied by a constant so 
that the small and high-angle intensity data are equal in 
the overlap region. The small angle data then is un- 
smeared using any appropriate method. If the inten- 
sities for the two experiments in the overlap region do 
not agree after unsmearing, the unsmeared small- 
angle data are again multiplied by a constant that pro- 
duces agreement in the overlap region. 
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